ANALISIS SEBARAN RADIASI HAMBUR CT SCAN 128 SLICE TERHADAP PEMERIKSAAN CT BRAIN

Purwatiningsi Purwatiningsi, Hari Eko Prasetio

Abstract


The use of high dose levels in CT Scan Brain produce distribution scattered radiation originating from the patient. This study was conducted to determine the distribution of scattered radiation at a particular point on the CT scan to obtain the curve isodose. Using Experimental Methods researchers conducted measurements of the distribution of the scattering radiation at 128 Slice CT Scan of the Brain CT examination. Thermoluminescent dosimeter (TLD) is used to measure the distribution of scattered radiation and use as a phantom object head. Eksposi parameters used are Brain CT program. Take 19 points to be measured. Using a point distance of 1, 2 meters, 3 meters from the gantry CT Scan. The results showed a minimum value of the distribution of the scattering radiation at the measurement point at a distance of 1 meter, 2 meters. 3 meters is at point A is the right side of the gantry and a maximum distribution at point C which is the examination table.

Key words: CT Scan, distribution of scattered radiation, isodose curves

References


AAPM report no.25. 1988. Protocols for the radiation safety surveys of the diagnostic radiological equipment American Association of Physicists in Medicine by the American Institute of Physics.

Stewart CB. 2000. computed tomography Book Essentials of Medical Imaging Series Edition 1. McGraw-Hill Medical.

Syahria, Evi S dan K Sofjan. 2012. Pembuatan kurva isodosis paparan radiasi di ruang pemeriksaan intalasi radiologi rsud kabupaten kolaka-sulawesi tenggara Jurnal berkala fisika vol.15 (4): 123-132.

Togap M. 2006. Proteksi radiasi dalam radiologi intervensional Makalah Seminar Keselamatan Nuklir 2–3 Agustus 2000.

Adi DNW. 2010. Analisis sebaran radiasi hambur dari pasien pada pesawat fluoroskopi dengan metode montecarlo dan pengukuran. Tesis Universitas Indonesia Fakultas Matematika dan Ilmu Pengetahuan Alam Program Magister Fisika Kekhususan Fisika Medis.

Buzug TM. 2008. Computer Tomography - From Photon Statistics to Modern Cone-Beam CT. Berlin Heidelberg: Springer-Verlag.

Beiser A. 1991. KonsepFisika Modern, Edisi 3, Terjemahan The HouwLiong. Jakarta: Erlangga. SyahriadkkPembuatanKurvaIsodosis132.

Plaats VD, GJ. 1972. Medical X-Ray Technique, Third Revised and Erlarged Edition.

Meredith WJ and Massey JB. 1977. Fundamental Physics of Radiology. Bristol: John Wright and Sons.

Akhadi M. 2000. Dasar-Dasar Proteksi Radiasi. Edisi I. Jakarta: Rineka Cipta.

Wiryosimin S. 1999. Mengenal Asas Proteksi Radisi. Bandung : ITB Bandung.

IAEA. 2005. Training Material on Radiation Protection in Diagnostic and Interventional Radiology,IAEA,Vienna.

Diagnostic X-Ray equipment compliance testing: workbook 1-Mobile Radiographic Equipment, Radiological Council of Western Australia,ISBN 0-9775570-1-4, Nedlands Western Australia,2006

Wardhana WA. 2007. Teknologi Nuklir : Proteksi Radiasi dan Aplikasinya. Yogyakarta : C.V ANDI.




DOI: http://dx.doi.org/10.31958/js.v8i1.439

Refbacks

  • There are currently no refbacks.


Copyright (c) 2017 Purwatiningsi Purwatiningsi, Hari Eko Prasetio

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Indexed by:

       

 

__________________________________________________________________________

Sainstek: Jurnal Sains dan Teknologi
ISSN 2085-8019  (print) | 2580-278x  (online)
Published by Institut Agama Islam Negeri Batusangkar

Email: sainstek@iainbatusangkar.ac.id


View Sainstek Stats

 

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.